# UNISONIC TECHNOLOGIES CO., LTD

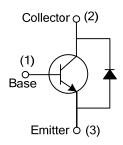
4128D

**Preliminary** 

# NPN EPITAXIAL SILICON TRANSISTOR

# MIDDLING VOLTAGE **FAST-SWITCHING NPN** POWER TRANSISTOR

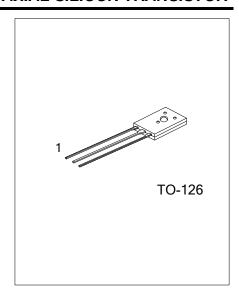
#### DESCRIPTION


The UTC 4128D is a middling voltage NPN power transistor. it uses UTC's advanced technology to provide customers with high switching speed and high reliability, etc.

The UTC 4128D is suitable for commonly power amplifier circuit, electronic ballasts and energy-saving light etc.

#### **FEATURES**

- \* High switching speed
- \* High reliability


### **SYMBOL**



#### **ORDERING INFORMATION**

|                                                  | Ordering                  | Dookooo      | Pin Assignment |   |   | Dealing |         |  |
|--------------------------------------------------|---------------------------|--------------|----------------|---|---|---------|---------|--|
|                                                  | Lead Free                 | Halogen Free | Package        | 1 | 2 | 3       | Packing |  |
|                                                  | 4128DL-T60-K 4128DG-T60-K |              | TO-126         | В | С | E       | Bulk    |  |
| Note: Pin Assignment: B: Base C: Collector E: Em |                           |              | ter            | • | • |         | •       |  |

Note: Pin Assignment: B: Base C: Collector 4128DL-T60-T - (1)Packing Type (1) B: Bulk (2)Package Type (2) T60: TO-126 - (3)Lead Free (3) L: Lead Free, G: Halogen Free



1 of 3

# ■ ABSOLUTE MAXIMUM RATINGS (T<sub>C</sub>=25°C)

| PARAMETER                                      |                | SYMBOL           | RATINGS  | UNIT |
|------------------------------------------------|----------------|------------------|----------|------|
| Collector-Emitter Voltage (V <sub>BE</sub> =0) |                | V <sub>CES</sub> | 350      | V    |
| Collector-Emitter Voltage (I <sub>B</sub> =0)  |                | $V_{CEO}$        | 200      | V    |
| Emitter-Base Voltage                           |                | $V_{EBO}$        | 7        | V    |
| Calla atau Cumant                              | DC             | Ic               | 5        | Α    |
| Collector Current                              | Pulse (Note 2) | I <sub>CP</sub>  | 10       | Α    |
| Deep Current                                   | DC             | I <sub>B</sub>   | 2        | Α    |
| Base Current                                   | Pulse (Note 2) | I <sub>BP</sub>  | 4        | Α    |
| Total Dissipation                              |                | Pc               | 40       | W    |
| Junction Temperature                           |                | $T_J$            | 150      | °C   |
| Storage Temperature Range                      |                | T <sub>STG</sub> | -55~+150 | °C   |

Notes: 1. Absolute maximum ratings are stress ratings only and functional device operation is not implied. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

# **■ THERMAL CHARACTERISTICS**

| PARAMETER        | SYMBOL | RATINGS | UNIT |
|------------------|--------|---------|------|
| Junction to Case | θıc    | 3.125   | °C/W |

#### ■ ELECTRICAL CHARACTERISTICS

| PARAMETER                            | SYMBOL            | TEST CONDITIONS                                                                     |     | TYP | MAX | UNIT |
|--------------------------------------|-------------------|-------------------------------------------------------------------------------------|-----|-----|-----|------|
| Collector-Base Breakdown Voltage     | BV <sub>CBO</sub> | I <sub>C</sub> =1mA, I <sub>B</sub> =0                                              |     |     |     | V    |
| Collector-Emitter Breakdown Voltage  | $BV_CEO$          | I <sub>C</sub> =10mA, I <sub>B</sub> =0                                             | 200 |     |     | V    |
| Emitter-Base Breakdown Voltage       | $BV_{EBO}$        | I <sub>E</sub> =1mA, I <sub>C</sub> =0                                              |     |     |     | V    |
| Collector Cut-Off Current            | I <sub>CBO</sub>  | V <sub>CB</sub> =350V, I <sub>E</sub> =0                                            |     |     | 100 | μΑ   |
| Collector-Emitter Cut-Off Current    | I <sub>CEO</sub>  | V <sub>CE</sub> =200V, I <sub>B</sub> =0                                            |     |     | 50  | μΑ   |
| Emitter Cut-Off Current              | I <sub>EBO</sub>  | $V_{EB}$ =7V, $I_C$ =0                                                              |     |     | 10  | μΑ   |
| Callegtor Emitter Seturation Voltage | $V_{CE(SAT)1}$    | I <sub>C</sub> =1A, I <sub>B</sub> =0.2A                                            |     |     | 0.8 | V    |
| Collector-Emitter Saturation Voltage | $V_{CE(SAT)2}$    | I <sub>C</sub> =3A, I <sub>B</sub> =0.6A                                            |     |     | 1.5 | V    |
| Base-Emitter Saturation Voltage      | $V_{BE(SAT)}$     | I <sub>C</sub> =3A, I <sub>B</sub> =0.6A                                            |     |     | 1.6 | V    |
| DC Current Cain                      | h <sub>FE1</sub>  | I <sub>C</sub> =0.8A,V <sub>CE</sub> =5V                                            | 8   |     | 50  |      |
| DC Current Gain                      | h <sub>FE2</sub>  | $I_C=3A,V_{CE}=5V$                                                                  | 8   |     |     |      |
| Transition Frequency                 | $f_T$             | I <sub>C</sub> =0.5A, V <sub>CE</sub> =10V                                          | 4   |     |     | MHz  |
| Storage Time                         | ts                | \\ -24\\   -0.5A   -   -0.1A                                                        |     |     | 4   | μs   |
| Fall Time                            | $t_{F}$           | V <sub>CC</sub> =24V, I <sub>C</sub> =0.5A, I <sub>B1</sub> =-I <sub>B2</sub> =0.1A |     |     | 0.7 | μs   |

<sup>2.</sup> Pulse Test: Pulse Width=5.0ms, Duty Cycle<10%.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

